All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

Where relevant, in questions 2-6, you may use without proof general results from the theory of Sturm-Liouville eigenvalue problems, provided that the results used are stated clearly.

(1) Consider the Sturm-Liouville differential operator

$$\mathcal{L} \equiv \frac{1}{w(x)} \left(\frac{d}{dx} \left(p(x) \frac{d}{dx} \right) + r(x) \right)$$

for real, continuously differentiable functions w(x) > 0, p(x) > 0 and r(x).

- (a) Write down the inner product $\langle f, g \rangle$, acting on pairs of complex-valued functions f(x), g(x) defined on the real interval $a \leq x \leq b$, that is associated with the Sturm-Liouville operator above.
- (b) Show that under this inner product

$$\langle \mathcal{L}f, g \rangle = \langle f, \mathcal{L}g \rangle + [p(f\bar{g}' - f'\bar{g})]_a^b \qquad (\dagger)$$

where primes denote d/dx, and overbars complex conjugates.

- (c) Write down, for a general function y(x) defined on [a, b], the most general possible boundary conditions (\ddagger) that, when applied to both f(x) and g(x) at x = a, b, cause the boundary term in (\dagger) to vanish.
- (d) Consider the eigenvalue problem on $a \le x \le b$ defined by

$$\mathcal{L}y = -\lambda y$$
, subject to boundary conditions (‡).

Show that

- (i) The eigenvalues $\{\lambda_k\}$ must be real.
- (ii) The corresponding eigenfunctions $\{y_k\}$ must be orthogonal.

(2) (a) The Gamma function $\Gamma(x)$ is defined by the integral

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt.$$

Find a relationship between $\Gamma(x)$ and $\Gamma(x-1)$, and use this relationship to express the product

$$\prod_{j=1}^{k} (c+j) = (c+1)(c+2)\cdots(c+k-1)(c+k)$$

in terms of the Gamma function (c is a real constant).

(b) Consider the differential equation

(*)
$$2x(x^2-1)y'' + (4x^2-1)y' - 4xy = 0.$$

Seeking series solutions of Frobenius type

$$y(x) = \sum_{k=0}^{\infty} a_k x^{k+c}$$
 $(a_0 = 1),$

show that successive coefficients in each series solution are related by

$$a_k = \left(\frac{k+c-3}{k+c-\frac{1}{2}}\right) a_{k-2},$$

and find all possible values of the constant c.

- (c) Find the two linearly independent solutions of (*), expressing the coefficients in terms of the Gamma function where necessary.
- (d) What is the radius of convergence of each series solution?

(3) (a) Axisymmetric solutions $u(r, \theta)$ of Laplace's equation in spherical geometry satisfy

$$\nabla^2 u = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial u}{\partial \theta} \right) = 0.$$

Using the method of separation of variables, show that the general solution of Laplace's equation that is regular at the poles $(\theta = 0, \pi)$ can be written

$$u(r,\theta) = \sum_{k=0}^{\infty} \left(A_k r^k + \frac{B_k}{r^{k+1}} \right) P_k(\cos \theta).$$

[You may state without proof that the only solutions of the equation $(1-z^2)w''-2zw'+\nu(\nu+1)w=0$ which are regular at $z=\pm 1$ occur for $\nu=k$ (k integer) and are the Legendre polynomials $P_k(z)$.]

(b) A large (effectively infinite) perfectly conducting metal block initially has temperature u=0. In the centre of the block is a spherical cavity of unit radius, containing an axisymmetric heat source, which for t>0 supplies a continuous heat flux into the metal block so that

$$\frac{\partial u}{\partial r}(1,\theta) = -H_0 \sin^2(\theta), \quad (H_0 > 0 \text{ constant}).$$

Find the resulting steady temperature distribution $u(r, \theta)$ in the block outside of the cavity (i.e. in $1 \le r < \infty$, $0 \le \theta \le \pi$).

[Hint: Rodrigues' formula

$$P_k(x) = \frac{1}{2^k k!} \frac{d^k}{dx^k} (x^2 - 1)^k,$$

can be used to calculate the first few Legendre polynomials.

(4) (a) The generating function formula for Bessel functions is

$$\exp\left(\frac{x}{2}\left(t-\frac{1}{t}\right)\right) = \sum_{m=-\infty}^{\infty} t^m J_m(x).$$

Use this to obtain the results

(i)
$$mJ_m(x) = \frac{1}{2}x(J_{m-1}(x) + J_{m+1}(x)).$$

(ii)
$$J'_{m}(x) = \frac{1}{2} \left(J_{m-1}(x) - J_{m+1}(x) \right).$$

(iii)
$$J_0(x) = \frac{1}{2\pi} \int_0^{2\pi} \cos\left(x \sin \theta\right) d\theta.$$

Hint for (iii): use the substitution $t = \exp(i\theta)$.

(b) You are given that $y(x) = J_0(x)$ is a solution of Bessel's equation with zero index

$$xy'' + y' + xy = 0,$$

where primes denote derivatives with respect to x.

(i) Show that

$$\frac{d}{dx}\left(x^{2}\left(y'\right)^{2}\right) + x^{2}\frac{d}{dx}\left(y^{2}\right) = 0.$$

(ii) Use the result in (i) to show that

$$\int_0^{j_{0n}} x (J_0(x))^2 dx = \frac{1}{2} j_{0n}^2 (J_0'(j_{0n}))^2,$$

where j_{0n} denotes the *n*th zero of $J_0(x)$ (i.e. $J_0(j_{0n}) = 0$).

(5) A real function f(x) and its Fourier transform $\hat{f}(k)$ are related through

$$\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ikx} dx$$
 and $f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(k)e^{ikx} dk$.

(a) Find the Fourier transform of the function

$$F(x) = \left\{ \begin{array}{ll} x & |x| < 1 \\ 0 & |x| \ge 1 \end{array} \right.$$

(b) Find the Fourier transform of

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x - y)g(y) \, dy,$$

where f(x) and g(x) are functions in $L^2(\mathbb{R})$.

(c) Use Fourier transforms to find the solution f(x) to the integral equation

$$\int_{-\infty}^{\infty} f(x-y) \exp\left(-\frac{y^2}{a^2}\right) dy = \exp\left(-\frac{x^2}{b^2}\right), \qquad (a, b \in \mathbb{R}, \quad 0 < a < b).$$

You may quote the result

$$\int_{-\infty}^{\infty} \cos(qx) \exp\left(-\frac{x^2}{c^2}\right) dx = c\sqrt{\pi} \exp\left(-\frac{q^2c^2}{4}\right),$$

but must prove all other results that you use.

(6) A function f(t) defined on $[0, \infty)$ has a Laplace transform $\mathcal{L}[f](s) = \overline{f}(s)$ defined by

$$\bar{f}(s) = \int_0^\infty f(t)e^{-st} \, \mathrm{d}t.$$

(a) Find the Laplace transforms of the following functions

(i)
$$f_1(t) = \begin{cases} 1 & 0 \le t < 1 \\ 0 & t \ge 1 \end{cases}$$
 (ii) $f_2(t) = \ddot{f}(t)$ (ii) $f_3(t) = \cos(\alpha t)$.

where α is a real constant and $\ddot{f}(t)$ denotes the second derivative of f(t).

- (b) Write down a formula for the inverse Laplace transform. Take particular care to define the path of integration in the complex s-plane.
- (c) Using any method at your disposal, find functions $g_1(t)$, $g_2(t)$ and $g_3(t)$ that have the following Laplace transforms

(i)
$$\bar{g}_1(s) = \frac{1}{s+a}$$
, (ii) $\bar{g}_2(s) = \frac{1}{s^n}$, (iii) $\bar{g}_3(s) = \frac{e^{-qs}}{s^2 + b^2}$,

where a, b and q > 0 are real constants and $n \ge 1$ is an integer.